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ABSTRACT
Researchers are exploring ways of predicting and controling scram-
jet behaviors for usage in high speed engines. The present research
seeks to use Optical Emission Spectroscopy (OES) sensors are now
presented to predict these behaviors. This prediction requires the
examination of the transition from one steady state to another. This
research sought to use denoising techniques and machine learning
algorithms to detect these transition in both simulated and real-
generated spectra datasets. It was found that the algorithms and
filters utilized generated between 97% and 98% detection accuracy.
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1 INTRODUCTION
High-speed air-breathing engines are presently important in the
fields of defense space exploration and transportation. This is be-
cause these engines (i) provide a higher specific impulse at a much
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lower weight profile than solid rocket motors and (ii) are capable
of operating over longer ranges allowing for more operational flex-
ibility. Presently Dual Mode Scramjets (DMSJ), which are engines
that can be operated in both subsonic and supersonic combustion
mode, are been investigated most promoted. Air-breathing engines
however, tend to be more complex to operate than rocket motors
because of the close coupling of the vehicle state with the engine
performance and operability. With this comes the possibility of the
breakdown of the supersonic airflow called the unstart [5]. The
avoidance of unstart is of high priority but with scramjets it is hard
to predict due to their sensitivity to pressure fluctuations within
the system.

Researchers have looked at ways of predicting and controling
scramjet behavior [10], however most methods utilize pressure
measurements within the isolator and combustor to determine
the shock location and the health of the combustion environment.
The use of Optical Emission Spectroscopy (OES) sensors are now
presented as an alternative in [5] as they can (i) decrease the phase
lag of the control system and (ii) provide more information, as
compared to pressure transducers, about the state of the combustion
occurring within the engine by using chemiluminescence from
emitting species [12]. These sensors could also be used in parallel
with pressure sensors to enhance the total control performance of
the system.

Improving the operability of DMSJs requires the measurement
and analyzation of the spectral emissions data and the transition
from one steady state to another. Each steady state effectively indi-
cates the global equivalence ratio between distinct chemical species
(OH and CH). The excited states (OH* and CH*) provide informa-
tion such as the region of burned products and the region of initial
fuel breakdown of DMSJs [8, 11] and are prevalent in combustion
environments. A more relaxed species state is reflected by more
light emission which is measured by the OES. Finding the distinc-
tion between the transition and steady states within transient OES
data helps to determine where the transition occurs, thus enabling
gain-scheduling in the OES controller which helps with DMSJ fuel
control.

Capturing the chemiluminescence of species using streak cam-
eras allows for measurement of light through imaging, although
naturally generating photoelectrons. This method generates noise,
which serves as an impediment to accurately identifying the transi-
tion state. Light penetrating the circumference of the camera is also
characterized as noise which is not helpful during experimentation
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[11]. Denoising serves as an effective method of preprocessing the
data for use in further classifying the various states, thus avoiding
unfavorable trade offs such as a loss in time resolution through
the use of other methods like averaging. Digital denoising filters
such as Median filters, Savitzky-Golay filters, Wavelets and Moving
Average filters enable a seamless and simple noise removal process.
These filters can serve as mechanisms for efficiently classifying
transient OES data because of their smoother signal frequencies
which make outlining the transition point an easier task.

Research has already shown that OES can be used as an error
signal in a combustion process for the purpose of control but did
not actually incorporate the sensor into a control system [19]. This
paper is based on research presently testing the use of OES sensors
as a way of avoiding unstart. As such this paper seeks to examine
data processing techniques to enhance sensing and control using
data filtering and machine learning algorithms with the aim of
classifying the transition state from the steady states and be able
to identify when the transition occurs.

Figure 1: Sample Scramjet Transient Spectra

2 DATASETS
The ability to control DMSJs relies on sensing changes in the flow-
field. The original emission spectra data did not provide successful
responses or classification results.

Studying transient events from the scramjet emission spectra
data (sample in Fig. 1) is necessary to understand the time scale
and phenomena of events that can be measured and interpreted
when relying on spectral emission measurements. The transient
data received from this spectra shows transition from one steady
state to another as seen in Fig. 3. From this the goal is to classify the
transition state from the steady states and be able to identify when
the transition occurs. This process would enable additional gain-
scheduling in the controller, ideally resulting in a faster response
and a ability to transition with smaller fuel step sizes using the OES
Controller.

For this research there were two types of datasets collected - (i)
real from the emission spectra collected from our partners at the
University of Virginia Supersonic Combustion Facility (UVaSCF)
and (ii) simulated ratio data (Fig. 2). Fig. 1 is the UVA spectra data,
Fig. 6 and Fig. 7 show the UVA chemical OHCH ratio data calculated

from the spectra. The goal of the research is to detect the transition
stages from the chemical ratio sequences using the machine learn-
ing algorithms. To this end, we consider the supervised machine
learning approaches where the labelled training data is built. In
the simulated training dataset the duration of steady states and
transition were randomly generated. Class 0 was defined as the
two steady states while Class 1 was defined as the transition state
from one steady state to another. 𝑥0,𝑖 (𝑡) = 𝑏𝑎𝑠𝑒0,𝑖 + 𝑛0 (𝑡) denotes
the observation data points in the steady states at time 𝑡 where
the noise is Gaussian N with zero-mean and covariance 𝜎0, that is,
𝑛0 (𝑡) ∈ N(0, 𝜎0), 𝜎0 = 0.008 and 𝑖 = 1, 2 for the two steady states.
𝑥1 (𝑡) denotes the data points in the transition period from the
steady state with 𝑏𝑎𝑠𝑒0,1 to another steady state with 𝑏𝑎𝑠𝑒0,2, added
by Gaussian noise 𝑛1 (𝑡) ∈ N(0, 𝜎1), 𝜎1 = 0.004. If 𝑏𝑎𝑠𝑒0,1 > 𝑏𝑎𝑠𝑒0,2,
the transition is decreasing otherwise increasing.
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Figure 2: Simulated Raw Ratio Data: First 2,000 Samples

The training data included two types of transitions: one increas-
ing transition and one decreasing transition. For each transition,
there were 50 random samples of 500 data points, totalling the
25,000 observation data points. Each observation had 7 features: the
Median filters with three different window sizes, Savistzky-Golay,
Wavelet and two gradient features. These features were used to
distinguish the transition observations from the steady observation
relative to a time axis. Fig. 3 show a sample data for the decreasing
trend.
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Figure 3: OHCH Ratio and Features



Detecting Transitions States in an Optical Emission Spectrum using Machine Learning ADMI, 2023, Virginia Beach, VA

3 MACHINE LEARNING ALGORITHMS
For this research Support Vector Machines (SVMs) and Feedfor-
ward Neural Networks (FNNs) were chosen, although they are two
alternative machine learning approaches for classification and re-
gression problems with different inductive bias and very interesting
properties. They however share a number of elements that allow
use to be able to establish a direct correspondence between them.
In fact, from a formal point of view, they are structurally similar
[16].

3.1 Support Vector Machine (SVM)
A Support Vector Machine (SVM) as seen in Fig. 4, is a supervised
machine learning technique derived from two foundations: Statisti-
cal Learning Theory and Mathematical Optimization, applied for
classification, regression, and other learning tasks showing high
performance in practical applications [2, 6, 9, 14]. It determines the
limits of a decision, producing a great separation between classes by
minimizing the errors. For this, SVM implements two basic mathe-
matical operations: non-linear mapping of input vectors in a high
dimensional feature space (kernels), and constructing a maximum
margin hyperplane in the feature space. The construction of this
hyperplane is performed in accordance with the principle of struc-
tural risk minimization (SRM). Using hyperplanes, SVM discovers
the boundaries between the input classes and the input elements
defining the boundaries and from the training data a maximum
margin hyperplane splits the data so that the distance between the
margin and the hyperplane is maximized. For more details on SVM
see Refs [1, 3, 7, 20].

Figure 4: Architecture of a Support Vector Machine
Classifier[17]

The SVM classifier is provided in the Classification Learner App
in MATLAB. While MATLAB possesses a number of variations of
the SVM, the Fine Gaussian model was chosen as it enables high
model flexibility and is capable of making fine and accurate class
distinctions [13]. This type of SVM also helped to define linear sep-
arability between multi-dimensional data where prior knowledge
about the data isn’t required [4]. The data was also automatically
standardized by scaling the distance between the predictors so fit-
ting would improve, thus avoiding overfitting or underfitting issues
[13]. The model was trained using the default optimizer parameters
provided by MATLAB.

3.2 Basic Feedforward Neural Network
Often referred to as amulti-layered network of neurons, the Feedfor-
ward Neural Networks (FNN) consists of a series of fully connected
layers that connect every neuron in one layer to every neuron in
the other layer ( Fig. 5). It comprises 4 components - (i) the input
layer that contains the neurons that receive inputs and pass them
on to the other layers. The number of neurons in the input layer
should be equal to the attributes or features in the dataset; (ii) the
hidden layer that is concealed between the input and output layers
and is used to perform alterations on the inputs; (iii) the output
layer that is the predicted/expected feature and depends on the
type of model been built; and (iv) the neuron weights that refer to
the strength or amplitude of a connection between two neurons
and are often initialized between 0 and 1. The data therefore enters
the input layer, travels through the hidden layers, and eventually
exits the output nodes. The network is devoid of links that would
allow the information exiting the output node to be sent back into
the network [18].

The major advantage of fully connected networks is that they
are “structure agnostic” i.e. there are no special assumptions needed
to be made about the input.

Figure 5: 3-layer Feed Forward Neural Network with a 8
Input Layers[15]

The FNN algorithm was also provided in MATLAB. It is a feed-
forward, fully connected neural network with 3 possible layers. The
first layer has a connection from the input, and each subsequent
layer weight matrix and then a bias vector is added. The ReLU acti-
vation function follows each fully connected layer. The final fully
connected layer and the subsequent softmax activation function
produce the output.

3.3 Approach
To conduct the research the datasets were first prepared through
the processing of denoising through the use of different filters.
The different steps involved in denoising the chosen dataset and
comparing the filters can be summarized as shown below:

• Collection of signal or time-series data (if not already noisy,
random noise may need to be generated)
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Figure 6: Detecting real UVA data using (a) SVM, (b) FNN for
the decreasing transition

• Utilization of MATLAB’s denoising filter functions with em-
pirical parameters to generate denoised datasets or feature
sequences.

The training data (the seven feature sequences and a classifica-
tion sequence) was then loaded in the two classification algorithms:
SVM and FNN in MATLAB Classification Learner app with default
settings. The FNN was tested using 1, 2 and 3 layers. For both algo-
rithms the network’s output, namely classification scores (posterior
probabilities) and predicted labels were collected and compared.

4 RESULTS AND DISCUSSION
Analysis of each algorithm performance can be determined using a
Confusion Matrix. From this we could determine how often each
algorithm was correct (accuracy) and how often did they predict
the answer as yes (True Positive Rate - TPR). For this research
the results for the 4 tests can be seen in Table 1 which shows the
TPR for the algorithms to detect the transition state of the OES
signals and overall accuracy for both states. It can be seen that all
4 tests were comparable in their accuracy. Their TPR shows the
main difference - 3-layer FNN has the best TPR, indicating that it
provided the best detection of the transitions in the signals.
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Figure 7: Detecting real UVA data using (a) SVM, (b) FNN for
the increasing transition

Table 1: Classifiers Results for DataSet (%)

Classifier Predicted Class (TPR) Overall Accuracy

SVM 93.0 97.8
1-Layer NN 92.8 97.9
2-Layers NN 93.0 97.8
3-Layers NN 93.1 97.8

Both SVM and FNN were used to detect transition states in both
simulated (Fig. 8) and real datasets ( Fig. 6 and Fig. 7). In both
cases the raw data is represented as blue, the filtered result as
black and the red dots denoting the true transition time points. In
both datasets the algorithms were able to detect increasing and
decreasing transitions.

For the simulated data where there were true transitions, in both
algorithms there were little harmful false positives. Fig. 8 shows
examples of transition results for both algorithms.

For the real dataset where there were no true transitions, both
SVM and FNN were able to detect the transition states. It was found
however that FNN had more false positives during the steady states
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Figure 8: Detecting simulated data using (a)(b) SVM, (c)(d) FNN

than SVM. Fig 6 and Fig 7 show examples of transition results for
both algorithms.

5 CONCLUSION
The goal of this research is to detect the transition that occurs in
OES sensor data. In our experiments, FNNs obtained similar accu-
racies to SVMs when detecting these transitions with nearly 98%
accuracy. This occurred no matter the filtering algorithm utilized.
Experimentation showed however that FNN produce more true
predictions that SVM.

The experimentation therefore generated questions that call for
additional testing and future work. In reference to the SVM classifi-
cation model, various methods can be taken for its improvement.
Since FNN performed better with more layers there can be more
tests with more layers. Another possibility is the testing with more
algorithms including Deep Learning algorithms.
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